177,460 research outputs found

    Maximum likelihood method for fitting the Fundamental Plane of the 6dF Galaxy Survey

    Full text link
    We have used over 10,000 early-type galaxies from the 6dF Galaxy Survey (6dFGS) to construct the Fundamental Plane across the optical and near-infrared passbands. We demonstrate that a maximum likelihood fit to a multivariate Gaussian model for the distribution of galaxies in size, surface brightness and velocity dispersion can properly account for selection effects, censoring and observational errors, leading to precise and unbiased parameters for the Fundamental Plane and its intrinsic scatter. This method allows an accurate and robust determination of the dependencies of the Fundamental Plane on variations in the stellar populations and environment of early-type galaxies.Comment: 3 pages, 1 figure, to appear in the proceedings of the IAU Symposium 262 "Stellar Populations: Planning for the Next Decade", Charlot and Bruzual ed

    Vibrational transfer functions for base excited systems

    Get PDF
    Computer program GD203 develops transfer functions to compute governing vibration environment for complex structures subjected to a base motion

    Magnets with stabilized conductors

    Get PDF
    Method fabricates stabilized composite conductor, for use in construction of magnets, using equal amounts of superconducting and metal materials, thus reducing weight, cost and size

    Shock absorber Patent

    Get PDF
    Design and development of double acting shock absorber for spacecraft docking operation

    Rotational joint assembly for the prosthetic leg

    Get PDF
    A rotational joint assembly for a prosthetic leg has been devised, which enables an artificial foot to rotate slightly when a person is walking, running or turning. The prosthetic leg includes upper and lower tubular members with the rotational joint assembly interposed between them. The assembly includes a restrainer mechanism which consists of a pivotably mounted paddle element. This device applies limiting force to control the rotation of the foot and also restores torque to return the foot back to its initial position

    Shock absorber operates over wide range

    Get PDF
    Piston-type hydraulic shock absorber, with a metered damping system, operates over a wide range of kinetic energy loading rates. It is used for absorbing shock and vibration on mounted machinery and heavy earth-moving equipment

    A numerical determination of the bow shock wave in transonic axisymmetric flow about blunt bodies

    Get PDF
    A numerical method was developed for calculating axisymmetric transonic (M greater than 1) flow about a blunt body; the bow shock wave location was investigated. A Rankine-Hugoniot jump was applied at the shock while relaxation on the isentropic equation of motion was used between shock and body. The shock wave is adjusted by a Newton type iteration scheme. Results are given for a sphere in the Mach number range 1.62 down to 1.02

    Incident shock-wave characteristics in air, argon, carbon dioxide, and helium in a shock tube with unheated helium driver

    Get PDF
    Incident shock-wave velocities were measured in the Langley 6-inch expansion tube, operated as a shock tube, with air, argon, carbon dioxide, and helium as test gases. Unheated helium was used as the driver gas and most data were obtained at pressures of approximately 34 and 54 MN/sq m. A range of pressure ratio across the diaphragm was obtained by varying the quiescent test-gas pressure, for a given driver pressure, from 0.0276 to 34.5 kN/sq m. Single- and double-diaphragm modes of operation were employed and diaphragms of various materials tested. Shock velocity was determined from microwave interferometer measurements, response of pressure transducers positioned along interferometer measurements, response of pressure transducers positioned along the driven section (time-of-arrival gages), and to a lesser extent, measured tube-wall pressure. Velocities obtained from these methods are compared and limitations of the methods discussed. The present results are compared with theory and the effects of diaphragm mode (single or double diaphragm), diaphragm material, heating of the driver gas upon pressurization of the driver section, diaphragm opening time, interface mixing, and two-dimensional (nonplanar) flow are discussed
    corecore